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ABSTRACT

Locally bounded weak solutions of i, th. .aintxcduction, are proven

to be locally Hflder contlnuolis. H4Ider estimates are also derived up to the

boundary for both Dirichlet data and (non-linear) variational data. Via a

counterexample we-frftw that non-neqative solutions, in general, do not satisfy

the parabolic version of the Harnack inequality.

AMS (MOS) Sutject Classifications: 35K65, 35K55, 35KI0, 3510, 35B65

Key Words: degenerate equations, bounded measurable coefficients, Harnack

inequality

Work Unit Number I (Applied Analysis)

Department of Mathematics, Indiana University, Ploominqton, IN 47405.

SonsoreA by the United States Army under Contract No. PAAC2Q-PO--C-0041.

Partially supported by National Science Foundation (rant 4A-206-AP, MCS

8300203.

i i ,



SIGNIFIANCF AND FYPLANATION

We consider a general class of parabolic eguat ins describing phenomena

of non-linear diffusion. A prototype is the equation

tit - div(I'ulrp2"u) - n, p ) 2

Estimates concerning the local and qloal H61lder continuity of the weak

solutions are supplied.

The main point here is to prove such results on the sole assumptions that

the coefficients are bounded and measurable. On physical grounds this means

that a high degree of irregularity is allowed on the structural functions

governing the diffusion, such as conductivity, porosity, heat capacity etc.

The local behaviour of such quantities is essentially unknown and

experimentally only certain rounded off averages can be measured. It is

therefore desirable to prove qualitative and quantitative facts about the

diffusion process without assuming any sort of regularity on these quantities.
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F:QT'ATIuNS; WITH MFAS11RAFII' CO PFFFICIENTS

E. DiBenedetto

0. 1it I (Ui'd 'Li (JR

W'c wll I i uV(: i rter ior and bound,,ry Il )der continuity for

\'v ;; :;:lut. ion:. Of d jon r,it ! j.li bbilic e,,ijlitions with principal

part in divuc;i nIc form, of the tyj z

(0.1) ut - div a(x,t,u,V u) + b(x,t,u, xU) = 0 in 0' ('1T

where .; is a region in flN ' = ' (0,T) , 0 T - , and

x' denotes the gradient witn respect only to the space variablesx

x (xI , x2  . ,xN )

- R2 +2 N 2N+2
The functions a : IR * and b : IR , are

only assumed to be measurable and satisfying the structure condi-

tions

[AI] a(x,t,u,Vxu) Vxu C0 IVxuIP - 0(xt) , p 2

[A 2] lai(x,t,u,VxU) I ClVxUIp + ol(x,t) , i = ,2,....

[A3J b(x,t,u,Vu) I C2 IVxulP + 02 (xt) ,

where, C i i = 0,1,2 denote given positive constants and Oi

i = 0,1,2 are given non-negative functions defined on u T and

subject to the conditions C')

(A4) '1 2 Lq rT}

1 +1
where 1 + - I and q , r I and satisfy

p p

t Department of Mathematics, Indiana University, Bloomington, IN 47405.

(*)Througliout the paper the notation of Ill] is employed.

Sponsored by the United States Army under Contract No. DAAG29-80-C-
0041. Partially supported by National Science Foundation Grant
48-206-80, MCS 8300293.
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-K1

if N 1 , p N

(0.2) N 1 0-N

if 1 < N < p

Given the structure conditions [A1]-[A 3], the degeneracy of (1.1)

is of the same nature of

(0.3) ut = div(IV xulp-2Vu) in D'(0 T  p > 2

When p = 2 , major developments, in the theory of local regu-

larity of (0.1) have been brought about by the discovery of the

Hlarnack inequality of Moser (14,151, for linear elliptic and parabolic

equations with bounded and measurable coefficients. The Harnack

inequality can be used to imply the local H61der continuity of the

solutions. The latter regularity statement had been proved pre-

viously by De Giorgl 31 in the elliptic case and Ladyzenskaja-

Uralt'zeva 1Il) in the parabolic case.

In the case of an elliptic equation, the extension of these

results from p - 2 to any p > 1 is quite direct and the theory

can now be considered fairly complete 116,17,19).
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rhIC ;arAbolic Casc i!; compl ic,4ted by tht. dissintcLry of the

space and time parts of the opjrator in (0.1), and at our kriowlcdgc

no rt-gularity result:.; ar awI11vd ble if p differs from 2. In

particular, non-cgative weak solutions of (0.1) do not in ejU-nral

satisfy the Harnack inequality. To see this we consider the fol-

lowing explicit solution of (0.3), constructed in I11.

p+2

R(t) < R(t)

(0.4) u(x,t) =

0 I'd R(t)

1

(0.5) R(t) = (j'4p+p-t 2] ±2 t) N p + p +  
, t > 0

p

This solution exhibits a behaviour similar to the solutions of the

porous medium equation; that is, it is of compact support in the

space variables for all t > 0 Clearly for a cylinder Q inter-

secting the free boundary lxj = R(t) , the Harnac: inequality fails

to hold (see also Remark B section 7 of 141 p. l16). Neverthless

S+' N
the solution u is C (IRN MI,TJ) , VO < < -

By a weak soluticn of (0.1) in T , we mean a function

u E V 2 ,p(flT)i C0,T ; L (.2)) n LP(0,T ; Hp( )) , satisfying

(0.6) u(xt)*(x,1)dxt 1 -ut

+ a(x,t,uv u) • V x + b(x,tu,9 u)#)dxdi - 0



4
01l,0for all , W (a,.,) such that t , and for all ti

0 t t T
S1 2

c'; ,SJ.uC' tiroughout that

iA5  u• L .,T )

Remark 0.1: If [A3 ) is replaced by the more restrictive condition

JA3 it I b (x ,t ,vxU)j " C21Vxul p-l + 42(x't) ,

then a local L bound for u can be calculated by a simple

modification of De Giorgi-Moser technique (see for example [11]

page 102-109). The proof gives an explicit but complicated (due

to the mentioned dissimetry) bound of IullIQ over a cylinder Q in

terms of the tIuIlpQ, over a larger cylinder Q' . We have chosen

to omit such calculation since they result from a variant of known

techniques.

With 3 we denote the boundary of i and set

(0.7) ST Q x (0,T' ; r = STUE x fol .

Clearly r is the parabolic boundary ot nT

The statement that a constant y depends only upon the data,

means that y can be calculated only in dependence of the various

constants appearing in [A1)-[A 41 , Ijull,,T and the dimension N.

We can now state our main results.hi_
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I. Iiitcrior rcgilirity

Theorem 1 Let u -V ) L .T) be a weak solution of (0.1),

and let (AI)-[A 4 J hold. Then (x,t) . u(x,t) is locally H6lder
contiub an 2T and for every compact set K ,T. there exist

a constant depending only upon the data and dist(K,!) , and

a constart a (0,1) depending only upon the data, such that

jU(xl 1 t I ) - u(x 21 t2 ) -, Y(Ixl-X 2 1" + It 1 -t 2 i1 / p) ,

for every pair of points (Xl,t1 ) , (x2 ,t2) K

Remark 0.2: Since our arguments are local in nature to prove
Theorem 1, we do not need to have a solution in the whole iT

It is sufficient to Iave a "local" solution; i.e. u V2 oc(QT)

L (oc(Q) , satisfying (0.6). Also we may assume 00' P
c h I O c (.1

¢2 q'ir

II. Boundary regularity

II-(a) Regularity at t = 0

We assume that (0.1) is associated with initial data

(0.8) u(x,0) = u0 (x)

and on u0 assume



jA 6 x . u0 (x) is continuous in . with modulus of continuity

0

. ' ' w. . ;,im( thdt U (0,T(. ) , ti' initial coturii

(I). ) 1'; , i the $9nse Of (0.0) r, t 0

Theorcm 2: Let u C(0,T : L 2 )) o LP(0,T ; H(U)) be a weak

solution of (0.1) which takes on initial data (0.8) and let (A1]-

0

[A6 ] hold. Then (x,t) - u(x,t) is continuous in Q - 10,T) , and

for every compact set K Q there exist a function p w(p)

]R IR continuous and non-decreasing such that

1

!U(Xl,tI) - u(x 2 t2 ) I W(IX1-X 2I + itl-t 2I
p )

for every pair of points (xl,t) , (x2 t2 ) K x 0,T] . The

function w(-) can be determined in terms of the data and w0(-)

If in particular

w0(p) = p , (0,1)

then (x,t) - u(x,t) is Holder continuous in 2 x [0,T] , and for

every compact set K 0 there exist a constant y depending only

upon the data and dist(K,aQ) , and a constant ; (0,1) depend-

ing upon the data and such that

lu(xlt l ) - u(x2,t2 ) /y(IXl-X2
° 

* jtl-t 2 j'P)

.If for every pair of points (x 1 ,t 1 ) , (x2 ,t2) K x (0,T.
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"ze'iark 0.3 If x * u 0 (x) is only known to 1je continuous in a

open subset ' Of ,. then the stated regularity can only be

claimed in the set ' [0,]

II-(b) _,-ity at ST  (oirl=hl(:t data)

The boundary 32 is assumed to satisfy

[A7 1 (0,1) , R0 > 0 such that Vx0 E a and every ball

B(x0,R) centered at x, with radius R < R0

meas[Q n B(x 0 ,R)] < (l-u,)measB(x0 ,R)

We suppose that (0.1) is associated with Dirichlet data f(x,t)

on ST  (taken in the sense of the traces) satisfying

[As] (x,t) - f(x,t) is continuous on 9T with modulus of

continuity Uf(*)

Theorem 3 Let u t V2,p(QT) n L 0T) be a weak solution of (0.1)

associated with Dirichlet data f on ST and assume that (All-

[A4) and [A7]-[A 8 ] hold. Then (x,t) - u(x,t) is continuous in

x (0,T] and VL > 0 there exist a positive non-decreasing con-

tinuous function p + L (p) : IR R such that

1

jU(xl't 1 ) - u(x 2 ,t 2 )I - (lx-X 21 + tt1-t2 1

for every pair of points (xlt 2 ) , (x2 ,t2 ) x [.,Tj If in

particular



8

wfU ) = 3 c (0,1)

then (x,t) - u(x,t) is Holder continuous in [ ,TJ V > 0

and there exist a consUtant ' depending only upon the data and

( P and a constant . f 0,1) depending upon the data and B

such that

Ju(x 1 1t ) - u(x2 t2) 1 , (ixl-x2 l' + Btlpt2 1 B

for every pair of points (xl,tl) , (x2 1t2 ) c S x (c,T]

Remark 0.4 If the Dirichlet data f is only known to be contin-

uous in a open subset S' of S (open in the relative topology

of ST  then the stated regularity can only be claimed up to S'.

Corollary 0.1: Consider the boundary value problem

(0.9) u t - div a(x,t,u,Vxu) + b(x,t,u,Vxu) =0 in aT

(0.10) u(x,t) = f(x,t) , (x,t) c S T

(0.11) u(x,0) = u0 (x) , x C a

where x * u0 (x) satisfies (A6 ] and (x,t) - f(x,t) satisfies

[As and assume that (A7 1 holds. Every bounded weak solution

of (0.9)-(0.11) (in the sense of identity (0.6)) is continuous

in "T In particular if u0  is Holder continuous in Q and

f is ol;der continuous on ST ' then u is Holder continuous
i n T

rinp I



1irPR(nnlUpFO AT GOVRNMNT FXPVFN

t I tn f -

it.- Iiv k ,( , t , u,' u) + b(x,t,u,'x U) = 0 in T

Su, n(xt) q(x,t,u) on ST

* . .u(x,O) u0  (X) , x . ,

(n n n denotes the outer unit normal to
ST 1 2'. .

Ai, the function g(xt,ti) we assume

01 g is continuous over ST ' IR and admits an extension

i(x,t,u) (Ier T Such that

(x It u)(x t )1 C3 l 4

( .I,)1 *d x. t u) , -u ,; tn cju
1

S liven non-ncgstivt- constants C 3 1 C 4

iy a weak solution of (0.12) - (0.14) we mean a function

u 2 ,p ( ;.T  S . t is f y inq

r2  2 (xtu;u

(0.16) u dx + -u *I(x,t,UTxU) VXx

t I  t i

t 2

+ b(X,t,U,V x , dx d i j g (x, u)4dc d-
tI .
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hr ~ Non .; , (Q , I

' : I}.4 : L, L (.). , ad| fo1" ll t , %2  satisyircj

*101 ~t a i] for a1T a

2

: 4 l'et U V2 (. ) r Lo C.) be a weak solution of (0.12)-
2,p TT

.14) in the sense of identity (0.16). Then (x,t) + u(x,t) is

intInuous in T) ,T] or all t - 0 , and there exist

.... r p d'pnd1ng only up<on the data and . , and a con-

*; (0,1) depending only upon the data, such that

'u(x't 1 ) - u(x 2 ,t 2) ) Y ¥ (Ix 1 -x 22K '+ Itl-t 2 1 X/ p )

" .), 'ry pair of points (xl,t ) , (x 2 ,t 21 S2 Ec,Tj

if in addition x • u0 (x) is flider continuous in 2 , then

)1d der continuous in 1T and the constant y can be taken

T:ua.. n'ti.t of , wnereas the 1' Ider exponent X will depend

.Il(; uin the Holder exponent of u 0

'?, mak 0.5 When ) - 2 the integrability conditions in [A3)

c,)inciAe with the requirements imposed in Ill), and these are

,,, t. be the best possible 1LO1.

. 0_n.,,: .6 If the functions A(xt,u,VxU) and b(x,t,u,V Xu) are

i!'(,entiable and satisfy further restrictions then one can prove

tnat (x,t) . V is 11older continuous in T ; in fact such a

renult holds also for systems (see 16,7)). The point here is of

(:oursc to prove the stated regularity only under the hypothesis

that a1 and b are measurable. An extension of our results to

systems, due to the generality we consider, is not expected. It is

in fact false evLn in the elliptic case (see (81 for a survey).



Remark 0.7 The proof presented h-,re shows thit th _irious Holder

constants and exponents in The orvrinc 1-4 are continuous increasing

functions of p . As p * these estimates deterioratc, but

they are "stahlc" as p . 2

Remark 0.8 One of the appt'c-ations of the a priori knowledge of

a modulus of continuity of solutions of (0.1), is the derivation

of l bounds for IVxul , (see [20]).

Remark 0.9 Existence theory for boundary value problems as-

sociated with (0.1) is based on Galerkin approximations and it

is developed in (11].

Remark 0.10 It should be noted that we have been unable to deal

with the case 1 < p < 2

Euristically the results will follow from the following fact.

The function (x,t) -* u(x,t) can be modified in a set of measure

zero to yield a continuous representative out of the equivalence

class u c V2 ,p,(PT) if for every (x0 't0 ) f Q T there exist a

family of nested and shrinking cylinders Qn (x0 ,t0) around (x0 ,t0 )

such that the essential oscillation w of u in Qn (x0 ot0)

tends to zero as n . - , in a way determined by the operator in

(0.1) and the data.

The key idea of the proof is to work with cylinders whose di-

mensions are suitably rescaled to reflect the degeneracy exhibited

by the equation. This idea has been introduced in (51 and further

developed in 17].
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In the prer.ent situation the arquricnts are more complicated

with resp !ct to the ones in Irj. This is due to the fact that,

unlike the solutions of porous mudia type equations (see [4,7])

where the sinqularity occurs at only one value of the solution (say

for example for u = 0) , in our case the equation may be

d.enerate at any value of u

To render the paper as self contained as possible, certain

known calculations have been reproduced.

In part I we prove the interior regularity. We introduce cer-

tain classes Sp (2Tr ,r,6,K ) , along the lines of a similar ap-

proach of [Ii, and prove tnat local weak solutions of (0.1) belong

to them.

Then we show that 5p(NT, M,y,r,6,c ) is embedded in

C (P.T) , thereby proving Theorem 1.boc T
We prove the boundary regularity by following a similar pat-

tern in part II. The methods of this part will rely heavily on

those of part I and in fact we will limit ourselves to describe

the modifications of the proof of interior regularity to achieve

regularity up to the boundary.

Acknowledgment: This work was completed while I was visiting the

University of Florence, Italy and the Institut fur Angewandte e
Mathematik of the University of Bonn W. Germany. I am grateful to

both institutions for their support.
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1. The , ), p 2

1,(,t . u on open se t in IRN  and for 0 'r I lct

"IT ,'f (x ) T we let B x C

Q (R,, B(R) (to0- ,to , 0

We let R , be so small that Q(R, T) Denote by

(x,t) - -(x,t) a piecewise smooth function defined in Q(R,T)

such that 0 - V. 1 and V(x,.) = 0 for x , aB(R)

For a bounded measurable function u defined in Q(R,i)

t+
introduce the cut functions (u-k)' , k I DR and let H be

a:u; number satisfying

(1.1) I(-k) Q (R,0) '

where 6 is a given rositive number.

Define also

(11.2) (11' , (u-k)"n - - I H-

We say that a measurable function u : 0 T  ]R belongs to the

class p (QI T,,, r,6,) if

(1.3) u C(0,T ; L (2)) 1 LP(0,T ; HP(0)

(1.4) u , T M
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aind if for all Q W, P) and a I I r, is above, the functions

(u-k) s-tisfy the intcgr~ii invualities

.5) ~ ~ (-) (x. t) dx + V Uk ) ~xJ
t t. t 0  B3(R) k,,)

I(u-k) .2 (xII [t~)±F iV~dxxy

B (R) 1 QRP

+ JJ (u-k) j2 ~~C P1Cdx d

+ treas A- (i111 IN (+K

(1.6) sup 2 2(j1 ,(u-k)l v) C (x,t)dx
t-P' t~t JB(R)

0 2

I * yV' (I ,(u- v)Ip (H ,(u-k) ,v)l I p V t.J dx d

ii*~uk!,~ U x
Q (R, p)

0i (C;mea r
+ -LItn (m as A R I dl



where we have denoted with A k,(t) the set

Ak R(t) 'x " B(3 ) (I(x,t)-k) 0

The various parameters in (1.5)-(1.6) are as follows.

A and are arbitrary positive numlers

(B) k is an arbitrary real number subject only to the restric-

tion

(1.7) 1l(u-k) 1 II 6

[Ci is an arbitrary number in (0,I) and q , r are larger

than one, are linked by

1 N N
(1.8) r pq - 'P

and their admissible range is

(1.8)(i) q (p,-] , r , 2.) if ;1 = 1

NP(1.8) (ii) q I P'N-r-3] , r t p,] ; if 1 0 N

2
(1.8) q p, if I p

Remark 1.1 These classes can be considered as an extension of the

classes G2 (,M,r6,) introduced in 111. Besides the fact

that p ? 2 the new requirement here is Lne integral inequality

(1 .6).
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They may also be viewed as a ,Jarabolic version of De Giorgi

cl.isscs, fundamental in the rcgulirity theory for quasi-minima

P I.

The following two facts establish the. connection between local

solutions of (0.1) and the classes 8 .,,,r,6,)

Proposition 1.1 Every essentially bounded local solution of (0.1)

belongs to Bp(.TPM,y,r,6,K)

Embedding theorem B p.,M,yr, is embedded in C3 /'P(Q
p loc (T)

for some a (0,).

The proof of Theorem 1 will result by combining these two facts.

Proof of Proposition 1.1 Introducing the Steklov averagings

of w V2  (Q T )2,pT

SJt+h w(x,s)ds , t (0,T-hj

wh(x,t) =

0, t T - h

-hi w(x,s)ds , t £ (h,T)

wfi(x,t) =

0 t h

!I
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~, tandard ajumcnt (n.eC for >ximple [li]) implies that (0.6) can

!o equivailently for,-ulatd as

( u + t u ) + [b(x, t, u, )u) :dxd'(1 9) t '. Uh . ..

for all W (.(.) and h • tI < t2  T - h

In (1.9) choose the test functions

(1.10) 0 = *- (Uh-k) V , k , IR

Estimating the various parts of (1.9) with this choice of text

function we have

( . Uh(Uhk) pdx dT  1 r 2
i) B(R )  it ;-T- [2h-k -

B B(R)

h P
B(R)

I I [ (uhk) 2 , p-1 r.tdx d-2

Q

where

t Qt z B(R) (t ot -0,ft ]  , t , (t0o- , t ]

Letting h -0 we obtain for all t £ (t0 - ,t0 1

I h
Ib



(.1) H - Uh (Uh-k) h h 2 (u-k) 1 1. (xt)dx

I~ f I(uk) ]2 P r 2 ~)*~~p2 j(X,t,-,.)dx 2 (uk)- dxd.

B(R) Qt

We estimate the remaining terms by letting h -* 0 first, and then

using [A1 1 - [A3 ].

(1.12) ff a(x,,,u,VxU) [-V x(u-k)-* 4± p(u-k)-'P-iVx ]dxdi
0t

C0 Jj IVx(u-k)-iPtP(xT)dxdT

Qt

Qt
-C fj IV(t x (u-k)Pluk± P>O -1 dIVxcd

Qt

-p JJ*(u-k) C 1 IV rI dx d

Q t

Here X (£) denotes the characteristic function of the set L

By Young's inequality



()PC Iv(u-k) ,1

t

-0 (u-k) (c r (Uk d xdx [(-k d +, 0d )) x
Qt

(b) p ,f1* (u-k) ! I- V4 ) dx d-
t

~~~~ (uuk-k)~xPdd ±- P
2t Qt

Combining this in (1.12) we dedue

(113 a(x,i Ug u) '.'xtdx di t 2 H~ -) P xd

-y J I(u-k) t PI V rI P xd- (0+P)lUk IdxdT~

Finally Qot

11.14) JJ Ilb x,-i ,U, V u)(u-k) ± PIdx d i- CJ V.(-)l u-) d ,

12 * 2 (u-k) t 4 dx!d

Now if we impose on the levels k the restriction

(11)k : 1(u-kVII1 6 L C0
~,Q(DP)C 2

we deduce from (1.14)
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rf x,,U~ u) (u-k) r Id dt 40fI (/ k*l dx

Qt Qt

Comibining these estimates and observing that t [t.ot0

is arbitrary we obtain

(1.17) sup J [(u-kVI 2 c(x,t)dx

t 0- 0 JB(R)

C

+ 4~ fJ IV x(u-k) lPCPdx di

-5 3(R [(u-k)) +]2 (x, t0 -P)dx

+ Y( fJ [(u-k) t I P17 V, c I Pdx dT

+ j (u-k) 'Ip c~ dxd}

+ YJJ ff0 +O1 +*2 3xi(u-k) t Oldx dr

Q(R, p)

LAI
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By holder's inequality

rr Pe Old 6:

0 q- 1 - r r l+2

q, r, a

• [meas A k  (1)] 9 -- d

Set

(1.18) q = p(1+K) ; r = _ p(l+K) ; K = 1 '

From (0.2) we see that q , r satisfy (1.8), and from (0.2)(i

(0.2) (iii) it follows that their admissible range is (1.8) (i) -

(1.8) (iii)"

Substituting this last estimate in (1.17) we see that u

satisfies (1.5) since obviously without loss of generality we may

assume that Co/ = .

We turn now to the proof of (1.6). For simplicity we set

(H,(u-k)u-k)

and in (1.9) select the test function

(1.19) 2= [,2((Uh-k) )' Cp,

where x * rP(x) is a cutoff function in B(R) which vanishes

on 3B(R) . It is apparent that * £ and that
p
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2 2 10c
( (uh -k ) 2(14-4)y' L (.., )

Ti efrc :;Lich J , is in admissible test function in (1.9). Ls-

tin ating thc variou!, t.,rms we have

(1.20) 1 h - J T Uh 2 ((Uh-k))] r dxdT ( t 2 dx

Qt

-'2 c p dx- S(R)x"{t0- 0)

and letting h - 0 we have

I h  _ R xt p2(H+- (u-k)-I, v) cP(x) dx

2 * P

B(R) {t}

-[ v 2 (H (u-k)± , ) P(xldx

)B (R) { t 0 - }

for all t ' [t 0 -C,t 0 ] .

In order to estimate the remaining terms we let h - 0 first

and then use [A,1-[A 3 ].

(1.21) ., a(x,-,uV u)v ,dxdT 2 0  2 u

2010124 x d
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p 1  dxdx 
Qt

By repeated application of the Young's inequality we deduce

(1.22) J C0  J1 (l+41) '2 1vxulP p dxdT

Qt

-2j (l+40 2w0(x' hcPdxdT - Y(P) fj( ')2-PIvx IPdxd-
Qt  Qt

- (p 2 4)J'J' dx d

Qt

For the lower order terms we have

(1.23) 2JJib(xTuVxu)k 'OPidxdt s 2C2Jh IVxuP(l+)I.2@,-l Pdxd,

Qt

+ 2JJ 42 "'C dx dT

t

- (u-k) + v < 26 by virtue of (1.1),

and
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n1

Therefore recalling (1.15) we ha ve

(1.24) 2f b(x,i,u,. Xu)4,4, C dx dr CO  vxUl P (I'v 2 Pdx di

Qt ot

1 h
n 1,n~ , [(--01 dx di

Q (R,c;

Collecting these estimates we deduce

(1.25) 0 2Pdx 5 ; CPdx

+d 2-pVx Pxdx d d

Q(R,c.)

+ 2-i + tn )I x JO'21 (u - k) >0 dxd r

0(R,p)

where we have used the fact that v -1 -2 -p since p 2

Treating the last integral as before the result follows.

The proof of the enoedding theorm wi1 I .)e the object of sections

2-5.

Ii
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2. preiiminaries

Let the point (x 1 t0) ouc fi xc tllroughout, and consider the

cylinder

p- - (p-2)

(2.1) R B(R) {t 0 -R t "

Set

+ ess sup u ; = ess inf u
N': NK

Q2 R 2R

and let w be any number satisfying

2M U - ess osc u
QN

2R

Let s* be a positive integer to be fixed later and set

p-2

(2.2)

Construct the cylinder 
QC given by

SB(R) (t ORP t 0

(2.3) R ) t 0 -O , 0

N

p- (P-2)

If > s* then bRP < R and we have the

inclusion

NCQR c R"
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Inside UR we consider subcylinders of the 
type

(2.4) B (R) it-rqRt) , n 0

where t t and t - nR' tO - OR The length of these sub-

cylinders is determined by the choice of n

(2.5) n= ( z) , S s s ,

where so  is the smallest positive integer satisfying

(2.6) 2M 6

20

The structure of the proof is based on studying separately two

cases. Either we can find a cylinder of the type OR where u is

"mostly* large, or such a subcylinder cannot be found. In both

cases the conclusion is that the essential oscillation of u in a

smaller cylinder around (x0 ,t0) decreases in a way that can be

quantitatively measured.

We will need the following two embedding lemmas known from the

literature.

W1,1
Lemma 2.1 (De Giorgi [3]) Let u (W (B(R)) and let z , k R ,

> k Then

(2.7) (i-k)meas A +  + cVuIdx

1 ,R meas{B(R)\A +) JA +\A +

.,R kR.,
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where C depends only upon the dimension N

Remark 2.1 A similar lcmma holds more generally 
for convex donains

(see (II).

For notational convenience 
we set

V T) = L (, ;P(ti)) n LP(0,T;
H P ( l ) )

,pT) = 0 (0,T;LP(n)) n LPtO,T;HP(CI) )

p

p 
p P

Z) essSUN u( ,t) +Iull

V (Q= Ost ulT P  P

and define 
uuU lV p (aT) V p (0iT)

Lemma 2-.22. Let u t T  , then

Ill~~Tr s pIUII T)

where C does not depend 
on u nor on T ' and where q , r

are subject to the conditions 
(1.B) - (1.8)(iii)

The proof results 
from a straightforward 

adaptation of the

arguments of [11) page 74, carried for p 2

From Lemma 2.2 we deduce 
two corollaries.

CorolarY~~ 23Let u t Vp(QT) , then

R}ull ,1% S c Ilu 1 Vp(a )"
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Corollary 2.4 Let u VP(;.) , then

Iii C(mrCasU [u+o0 T.T)  H
P 1 T V (j:T)

Remark 2.2 These Corollaries still hold if u , VP (. ) and

does not necessarily vanish on :,

In such a case C depends on Q T via

T +=

With C we will denote a generic non negative constant depending

only upon the various parameters in the classes Sp(QTM,y,r,6,w)

and independent of R , , For a measurable set z we write

,1 -o rn'-as L - I

3. The first alternative

Lemma 3.1 There exists a number "0 t (0,1) independent of £ ,

R , s* such that if for some subcylinder iR

I(x,t) , Q Ru(xt) + -n

2

then either

4.;
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S-1+ (p-2)

(3.1) (-j-;_) r or

- wR

(3.2) u(x,t) u + + , (xt) R/2
20

8 ^~

Proof: We assume that (3.1) is violated so that QR CQR and

fix a cylinder R for which the assumption of the lemma holds.

Let

R R R n Rn+1 R +3R
Rn -7 + n ; Rn 2 Y ,n 1,2,.

2 2

We will write (1.5) over the pair of cylinders 'Qj and QR
n n

-nby choosing the function c so that (x,t) = 1 for (x,t) Rn

and vanishing for t - n Rp  In this case
n

2n+l 
2n+l 2n+l /2 s)

p - 2

i x { T ; s&ts - = C--XRt nRp  R p

As for level k we take

kn = SO+ + n n - 1,2,....

2 2gbn

In this setting (1.5) can be rewritten as
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(3.3) sip 1(u-k) 2  (t) + (u p• ~ ~ n 2, Bl~~t + lxU- n )

n A.'

2c p(u-k ) Pdxdi + 2s) p-J (U-kn ]2 dxd
C --P ( U-kn)]dd /2

R n n

+A (Ak noR ntld T)r

n

The choice of levels k is justified since

JJ (u-k)J 11W sn s0
n

We estimate the various terms in (3.3) as follows. First

I [(u-kn))] Pdxdi + (W/2s0)J
p - 2 J (u-kn))

2 dxd

n n

R nn n

2 -nRpn
n

Next for all t [t'-nRp ,t 'J

11 (u-kn)- 12 (t) ? p- lu-kn - (t)
2,B (K p,Bl n)

e ; P(Uokn) pI (-kn)- It)

p,B(R

+1n
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Using these remarks in (3.3) and dividing by n

p 1 -

(3.4) su l(u-k) n 1 (t) + 7x t(U-kn)f
i. Wn3St-,z pa (Rn)  

Pg

nn

S # C C A iI

n

I A ) a £( i I( l+ -

n' n

The cnange of variable z t-- . transforms 
0 R and re-

spectively into

BR {-R0), % B(R) (-R , O)

n nn n n

Setting also v(x,p) - u(x,t+nz) , inequalities (3.4) can be written

more concisely as

-1p 2 p 1 ~p
(35) I(v-kn)- c L i An

n p(5n) Rp \0 n

0 r(J r~~1+c ~(1+0()
+ C (I- A n(Z) {dz) 1 n )

where we have set

k0 IA.(z) Idz

An(Z) (x f a(Rn) ) v(x,z) p k I
- n
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Let x n € (x) be a piecewise smooth cutoff function in
n+

B(Rn) which cquals one on B(R n+ 1  and such that px nI 2 n+2/R
0 _

Then (v-k n n i V (Qn) and by Corollary 2.4.

p p _pp
(3.6) 11(v-k n)l II ( v-k). n ' C Ii (V-kn)-,noP' Qn+ 1 P'1 Qn Vp (Qn)

p , p 2 P(n+2) p
S CIA nI*P (V-kn)- I  + R p  II (v-k n)- IIQn

Since

l(v-k n ) I Jk n- kn+11 P ) I-(/ So0 2- P(n+l)In1

PQn+l

we deduce from (3.6) by making use of (3.5)

1 + p rqn If A nI Nz + -- N4P fo -r p(

(3.7) N n+ll - C 4 n P  + [A (- rA

n

r 21 F 1 + K ) - 1

We set

r P
Y n' Z (JA ,(Z) lq dz)

n A Z = TB(RI -R

n

': n
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Then from (3.7) in dimenionllcSS form WC havc

(3. ) n p + Y n;
(3.8) Yn C

whel used the inequality

which follows from the definition 
(2.5) of n and the fact that

we have assumed that (3.1) is violated.

On the other hand, by the embedding 
lemma 2.2

Z., 1 (kn-kn+. )P S (B(n+I) (-11 (v-k) ) - ii

Zn~l( n n+1,nn+ 1

SB(Rn+1 I (V-k n)-on)l

q,r,Q n

CR - N (v-kn) - + - IL (v-k ) p

vp (5n Rp P

Then using (3.5)

(3.9) 
Zn+ C 4nP{Y + z } .
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From lemma 5.7 of [ill page 96, Y, Zn  0 as n

prIovided

Y' I 1 

where 0 is a small constant depending upon C , p , K only and

idependent of R , W

Therefore the lemma is proved if we choose a0  sufficiently

small depending only upon X0 .

We suppose that the assumptions of lemma 3.1 are verified

for some subcylinder QR and construct the cylinder

R
R -

Bi(!) x {T-nl(E) , t o •

The length of such cylinder is at least n and at most 6 ,

R
so that setting for simplicity o = we may write

Q B(2p) x {t -O(2p) p  t

where

p-2

(3.10) so <- S)S S

Lemma 3.2 Assume that IF =1(u-(1- + s0+ll) > s Then

2 2

for every ' 1 (0,1) , there exists a positive integer

S= Sl( '6'Y' ,8'r) independent of and R such that either



N_ 1 + 35(3 11 R- ' -  [ hl+ -- ) (p- 2 )

(3.11) R (s) )I ~ or\2s

(3.12) meas f B(o) I u(x,t) < L + - •alIB(0) I
2

for all t £ [t 0 -8( ) to

Proof: We will employ inequality (1.6) over the cylinder Q20

As a cutoff function (x,t) O r(x,t) we take a function independent

of t , such that t(x) - I on B(p) and 1v7j 5 P-  We observe

that for t - t - ( 2 0 )P - by lemma 3.1 u > p +

and therefore Vn z 1

20 20 )

Next for v = , from the definition (1.2) of '(.) we have,

20

since H s s0+1

20

- + 2 iwns (n-l)t 2

Moreover a quick calculation gives

2 2-)

(U 1 +a|)
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Using these remarks in (1.6) we have

(3. 12) is bo n e a bo v dx

C, , 2 O. 02

,,S+n)p 
r(i

+ CnI --- 6 R N K IB(P) I •

Let n be a positive integer to be selected and 
set s I 

=  0o + n

Then recalling (3.10) if (3.11) is violated the right hand side of

(3.12) is bounded above by

C(s*)nlB(p)I

le bound the integral on the left hand side of (3.12) from below

by extending the integration to the smaller set

{x , B(P) I u(X,t) < + s

2

On such set, since !i > we have
s0 +22s0 2

,2(, -( + u,))- tn2( .2s 2

60+1 s s+n , ~ -
2 0 2 u/2

(n-3)2 In 2
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Therefore for all t ' [t o - ()p , t

(3 .12) A- () C(sn)- 2 JB(P)
+ s 0nip (n-3)
20

To prove the lemma we have only L- ...-se n so large that
C (s *)n . C

(n-3)

Remark 3.1 The number S= S1 (a) claimed by lemma 3.2 depends

upon 'Y,,6,r and s* The number s* is not fixed as yet. It

will be fixed later independent of w , R and therefore we can say

that sI  is independent of w and R

Without loss of generality we may assume that s> > s*

Lemma 3.3 Suppose the assumptions of lemma 3.1 hold and assume

that H > s-- . Then there exist an integer s > s* indepen-

dent of , R such that either

S 1+( 1- (p-2)
(3.13) R P ? (-S r p or,

(3.14) u(x,t) > - + -!- V(x,t) ( B) {t 0 - n  , t0}

r + P ,Pn+Pn+l P+ = 1,2,...,Proof Let Pn 2n ' n 2 2 +2

22 2n+
and consider the cylinders
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n n 0 02) to

- - R p

bo, C :. (t 0- (:F) to t 0

I e observe that these cylinders decrease in the space variables

but theit length is unchanged with respect to n . This is due to

the fact that lemma 3.1 gives information on the level
- p - R P

t- 6() = t - , and such information we want to exploit.

We assume (3.13) is violated and write (1.5) over the pair of

cylinders and D i as follows.
n  n

We choose a cutoff function c independent of t such that

n+2
t - 1 on B(p ) and IV x c 2 /p Then the term involving Ct

in (1.5) is eliminated. As for level k we choose

k u+ , n = 1,2,... ,k Sl+1 s +n
2 2

where s I  is the number claimed by lemma 3.2.

By lemma 3.1, u > for t = t t

21
and therefore we have

-2 )dx = 0

From (1.5) with the indicated choices we deduce
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2 - p

s (u-k )-l (t) + I (u-k n ) fl _;(3.15) nu ,B(" P'Dn

t-O • t' to

1p P +CA- (T) I d,

-C -- V"(U-kn Dt + ( jAk ,p

For all t t it0 - *(2)
p - to,

-2 
s 1 p-2 - t(u-k n)'l Mt I (u-kn) I I M t

2,B(Tn )  
P'B(pn)

{}(u-k n ) - 11 (t) •
P2B(, n )

We carry this estimate below, divide by - and make the change of

variables

t-tO
z -

The cylinders DO and D e are transformed inton cn
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D = B(C n ) 0O( ) (R-O
n n %n n

stting also v(x,z) u(x,t0 +Zz) , inequalities (3.15) can be

rewritten as

(3.16) (v-kC) _ _ 1(_ -kn) 1
V (D n) P pD n

- (Wq)

with the obvious definition of A n(z)

Using (3.16) we may repeat an iteration process in all ana-

logous to lemma 3.1 and conclude that there exist XI > 0 inde-

pendent of R and w , such that if

(3.17) meas{ (x,z) D1  v(x,z) < u + -I--1 I

21

then either

N,, 1) +I +(p - 2 )

Pp

or

v(x,z) ' + V(x,t) D_ B(2) -0
2122



41

Scaling back to the cylinder D and choosing A in

lcmnza 3.2 we see that we can choose s := S 1 (AI,s') so that (3.17)

holds. This proves the lemma.

We sumnarize the results obtained so far.

Proposition 3.1 There exist m0 c (0,1) and a positive integer

s independent of w, R , such that if for some cylinder of the

form n with n given by (2.5)

(3.18) meas{(x,t) f QR I u(x,t) < w + -_)_}sQnI
20

then either

(3.19) u s 2 s R- F + 1 + )1-S C I+ 1 ++i+
(3.1) 2Rp ( r - 1 (p-2]

or

(3.20) ess osc u s w(l
n 2

R/8

Proof If a cylinder satisfying (3.18) exists, then by lemna 3.1

and lemma 3.2, the set where u u- + -±- relatively to

Bp t 
2s '

B(!!) t , t 0 ), can be made arbitrarily small provided

(3.21) H- - (1, - +."+. 1)o R

0 s+2
20
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Then by lemma 5.3

BR.I ;R 
P

(3.22) u(x,t) + l V t) 0  t o )

2

Since ,. , from (3.22) we also have

ess inf u > w + - ; s = s + 1

R./8

and hence

+ 
-- i)

ess osc u = ess sup u - ess inf u s - -

n n n
OR/8 R/8 OR/8

On the other hand if (3.21) is violated, since obviously

H - , we have
20

ess inf u - L + + U U
Qn s0 +1 s 0+2
R/8 2 2

from which the conclusion follows.

Remark 3.2 The various constants in (3.18)-(3.20) are independent

of £ and R . the number s, depends upon s* as shown by lemma

3.2. The number s* will be fixed later independent of , R
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4. The second alternative

We assume in this section that the assumptions of lemma 3.1

are violated, i.e. for every subcylinder QR

(4.1) meas{ (x,t) E Qa u(x,t) < LA + >

20

Since if s0 a 2 we obviously have

2s0 2s0

we will rewrite (4.1) as

(4.2) measu(x,t) c Q u x,t) > u + (l-o IQ; .

20

valid for all cylinders c Q The parameters 6 and n are

those fixed in (2.2) and (2.5). In this section we will determine

the value of s* .

Lemma 4.1 Let QR c QR be fixed and let (4.2) hold. Then there

exist

t* f [-nRp ,  -- nRPj

such that

+~ I-(R0l

A + _ 
0_ ,

250
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Proof If not, for a.e. t , -n } ', t1 -- P0 p]

2

+T R
and

meas{(x,t) u(x,t) W A +o  + (T) Id,

2 t-nR p  u SO
20

contradicting (4.2).

As before we let

+ + W) +11 W

2 0 ' R 2s 0

+ 
3

Lemma 4.2 Let 5R QR be fixed, and assume that H >

There exist a positive integer m independent of -, and R , such

that either

NKI i+K - -+ (p- 2)

(4.3) R p  2 p

or

(4.4) A+ M B (R)
- s0,R

0

€:'' ifor all t , t -- nR p ,  ]r,- Q

- 0i
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Proof We will employ inequaltiy (1.6) over the cylinders

QR* I B(P) - It ,It] ; O*-oR 7 B(R-oR) x [t*,t] .
RR

Here t* is the number claimed in lemma 4.1 and a t (0,1) is

arbitrary. We take also

k

so  SO+m

20 
20

where m has to be chosen. The cutoff function will be inde-

pendent of t and such that € 1 on B(R-oR) and 1V; 1 (oR)- 1

With these choices (1.6) can now be written for all

t [t*, t] as

B (R- oR ) X { t ( 2 0 2 0 )

J ~ (u-Cu ( 7;)) + ; dx
B (R), { t* }22 s m

+ _ i2(H+ (u_(v - -)) +
. t* B(R) 2 2

wuH I SU (W WO -p dx di
2 0 

2

+C 2+mp! +p-2 s +MIt A+ E(+

+ C ( )t)) n H+ 2 0 IA ++ ( d t)
St* Ij

280,
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The various terms in (4.5) are estimated as follows. First we

observe that

- ) ) -s;+ " m En 2

2 0 2

2 2

In H m Itn 2

Next from the definition (1.2) of 4 we see that 4' 0

on the set < ,. Therefore by using lemma 4.1 the first

integral on the right hand side of (4.5) is estimated above by

* ' 2 -oo-s ( + _ w ) -+ )dx s m2 In22/ (L0)B(R).
B(R) xjt* 2 0

- p (2 )P- 2R

Since t- t* s nR= = , the second integral is estimated

by

C MIB(R) I
OP

Finally for the last term we have the estimate

+I p ( -2

C mIB(R) s O-m) P~ l +, r ) .N-

iI __
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If (4.3) does not hold, this last term is majorized by

Cm1B(R)I

Putting together these remarks, from (4.5) we have for all

t ( (t*,t]

(4.6) 2 , (u-(L + ) + Ix
S (R-a R)x {tl O

sm tn2 2( )IB(R) I + -2- mIB(R) I

we estimate the left hand side of (4.6) below by integrating

over the smaller set

B(R-oR) n [u > sW
2 0

Then on such a set, since H > a___ we have

(- (I+ +, In 2 2 - (m-2) in 2

2 2 0+In
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Carrying this estimate in (4.6)

(m-2) 2 in A 2 2 , (t) m 2n 2 2(-,02) IB(R)I

20

+ C R

(4.7) IA+ ( t

2~

C_--mc 11 R

op

on the other 
hand

A4  (tfl IA+ (t) I 4 B(P)'B(R~-oR)

A+M + +

- - , ( WR
S 04m' s +m

IA 4  (t) No)B(R)

s +mRoR
20

Comb lg this with (4.7)

(4.8) )A,+ - (t) -'

..-. for ,all t * Iret

V.
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3 2choose o so small that oN u 2 and m so large that

/-- 2  ! (12 o/2) C 3 2- ( - 0/2 (+ 0 )  :P-- 0 •

then for such a choice of m

(4.9) f-+It)B R

2 +rnR
20

Remark 4.1 Since a0 is independent of w , R , the number m

is independent of w, R . The number s* which determines the
e

length of Q is still to be chosen. We will choose it later

subject to the condition s* > sO + m

We will set

S2 - S0 + m

The arguments of lemma 4.1 and 4.2 are carried under the assumptions

that (4.2) holds, and we know that (4.2) holds for every cylinder

of the form -c e
R cR

Since s* > s o  we have Vp 2

& 0 s0 (p-2) I *(p-2)(4.10) -l -}2 < 1+Ct0 /2 2s .
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Corollary 4.3 Assume that H -/2 Then either

-+ )+ (p- 2)

(4.11) Rr or

(4.12) A(t) V~~~21
- U,

S2
22

for all t ( [to+ 0 eRp, t0

Proof Every cylinder of the type Q satisfies (4.2) and lemma 4.2

holds for every such cylinder. Therefore the conclusion of the

lemma holds forall t satIsfying

t ft - (e - ( n -- a-) n)R p , t01

Because of (4.10) and the definition of 0 and n

and the Corollary follows.

From now on we will focus on the cylinders

S(a0) :- B(R) x {t 0 -y ORP, to)

R 0.
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Lcunma 4.4 Assume that (4.12) holds. Then for every 80 ( (0,L

there exists a number s* (which determines the length of Q0) I

independent of and R such that either

Ns i+K+ 1 +
-- I+ - -) (p-2)

(4.13, R p  (2?) r p or

(4.14) meas (X,t) 0 Q5 (C0 ) u(x,t) > 80 IQ ( 0 )I •

Proof We write inequalities (1.5) over the cylinders Qe

and Q2R( 0) as follows. We choose a cutoff function C such

that 4 1 on Q (a 0 ) and 4(x,t 0 - (2R) P ) = 0

0 s &t s
. C(i 0 ORP)-, IV xcl s 2R -

As for the levels k we take k - u 2 where s* a n a 2

and s2 is the number claimed by Corollary 4.3.

Negelecting the first term on the right hand side of (1.5) and

using the indicated choices we have

(4.15) IVx(U- j + 2 )+ dx d-

Q e(r

s-) [(u-(p + n)) + dxd-t
RP if2Q2 (a 0)

rr22

C[ + _ _) +]2

+ 0 0 A++

22 r
t 0  )

0-
--09(2R)p
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Wv eitxmatu t. , right hand sidu of (4.15) as follows

(i L(u- (tu +6 - C-- Cx t

j *( 2 2~

2R 0

(ii) Recalir ig the definition of 0

1(( 4- 1 dxdi

'p2 lQPj n 2 *)R

Q2R( 0 )

A +r L+ IR ) r

(( -0 +),R 
Rp  (

to 3
t -t(R)2

Carrying these estimates in (4.15)

+ C p2 p-2
(4.16) IV,(U- (W + dxd R

2 ( ( *0

+ ++ -y R N) jQ1 (o0)
+ O R N

Next we use lenmna 2.1 over B(R) for all the levels

t t (t -0 .iRP't As for levels I , k we take
0 30

+ ' .

2 n  2

Notice that for all t t 0 --- 0R p , t by virtue of Corollary
0 3 0Q iteo oolr

4.3 we have
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(t c-f I RII) 0 2 
5

meas ( R) ',A+ (t13 R

Therefore (2.7) in this setting gives \t t to - ,0 to0

(41)A+() 
CR 

x K dx

2.7A (
+  (t)\+(t)

Ak , R

We ma)orize the right 
hand side of (4.17) by

+1+ (x ~ V U ) P) P k, R (t )\1,R

AX,R (t)\A 
LR(t)

integrating (4.17) over Ito -- a RP. to0  and setting

AnI + +

0to - 3 OR P  2n

we have for all n ? s2 + 1

(4.18) 2 
(U- (p 2 Pdxd2 n n CR x 

d2 LA n - 1 n

0R (k0 )

We take the F power, estimate the integral on the 
right

P-1

hand side by using 
(4.16) and divide by 

(w/2n)
P / P -1 to obtain
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p n -sN : 2 s  P Jl+ ( --I- - ) (p- 2)A p I  2 - s  + (
An

1
IQR(.0) I - [An 1 1-An

Since s* - n > s , if also (4.13) is violated, the quantity in

brackets is bounded independent of , R , s* and we deduce

(4.19) n  A C IQ (a 0 )I [An 1  A

These inequalities are valid for all n > s2 and n s a*

We add (4.19)n for n = s2 + I , s2 + 2,...,s*.

The right hand side can be majorized with a convergent series

and therefore we obtain

(4.20) (5*-s -1)A PDT CIQR(Qo) I

and C I
As* S C -IQ0(L)

Is (s 24 11pp

To prove the lemna we take s* so large that

(4.21) C

Notice that if 80 is independent of h and R , also s* is

independent of w and R
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Remark 4.2 The process described by lemma 4.4 has a double mean-

+ O W
ing. On one hand, given B determines a level k2 s *

and on the other hand (recalling the definition (2.2) of e) de-

termines the cylinder Q . That is, given 6 , (0,1) , the mea-
+ *

sure of the set where u > w - can be made smaller than

a only on a particular cylinder QRcO( related to the level

+ W /2s

Lemma 4.5 Suppose the conclusion of Corollary 4.3 holds. Then

s* can be chosen so that either

(4.22) R (O-+ +(--) (p-2) or

(4.23) u(x,t) S PA -- , v(x,t) E Q(a 0 )
2 7*1

R R Rn+l R n R 3R
Proof Set R + ; f + - 12...

n n n 2n+2 nl2
2 2

We will write inequalities (1.5) over the pair of cylinders
o (S)aneR ( and Q (a0) . The cutoff function t will be taken so

n n
that I on Q- (o0) , (x,t0 --a- 8R) = 0 andnp

IV xCI s 2n+ 2/R 0 s C2n /ORP

The levels k are taken to be

k + - Wf- - W .n 1,...
n 2s*+1 2s*+n
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In this setting (1.5) can be written as

(4.24) S 111Ii (u-kn) +l 2 (t) X IVx(u-k n) +

- 0 **p .t _t 2,B (Rn )

0 3 n 0' 0R ( 0)
n

n)p n
C .R-k(i1(u-kn) +R (L + 11(ukn)U )R 0 R n 0

+ r

(+ C0 (R IA~ knRn 6t dl)
to- 3 n

We estimate the various terms in (4.24), recalling the de-

finition of 8 as follows. First for all t ( (tO --- R n t o

(U-k2n)+ (t) 0 11J (u-kn)+ (t)

2,B(R n )  p,B(R)

Next

(1(U-k n) +11p  + - k n(I(~k) ~+ e L(U-kn) + 2

P 'QR (C0 ) 2 Q R (a0

to

S2 JA Rn(

t -0 ORP
0 n

t0L-- in
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Then from (4.24) dividing by 0

(4.25) sup H (u-k) + p  (t) + 6-1117x(u-k n)+l p
a0  ~ ~,BIRnp, l 0

t0- 0RP t" t o
.

to

n3 0

np p 0

h cna (n-e 1 k R (t)sdt

do 

r 
11Kcv 

Pi

+ A Ik n R n  d o + (~q r(

3n
The change of variable z =3(t-t0)a0 , transforms Qe (a

0 0

and Q (0)respectively into

00

n

B(Rn x {-Rnp' to 1 n t-RP 0).

a0

We also set vlx, z) = ulx, t 0+ -T-8z) and,

An (z ) - x t B(R n )  v(x,z) > k n

0
A n p J An (z)lZ"

-i • • m a II t it I I 
IIIlan
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Then (4.25) can be rewritten more concisely as

(4.26) jJ (v-kn) + c ) , n

V p (Q2) 2

r (K ) I+ 1 +

+ C A n(z)I q d p p

n

Let x n(x) be a cutoff function in B(R ) which equals

one on B(R n+) and IV xnl s 2n+
2/R Then (v-kn)+ nn~ln Vp (Qn

and by Corollary 2.4

(4.2,) II(v-k ) + Ii (v-kn) + r. I - AN +p 1 +(k
n P ' Q n + I P ' , n n . n ( 5n )

- (1v- lip )+ 2Pn(n+2)+Q

C- A pN + p -+ II(v-k ) II
n Cn~(I~~ )+

n p n) R P' n)

Using (4.26) we find

+CAp r 1 + PrP-

i(4.26) 1',,-k, , + IIp  S C 2" ' A + p

n n R1 2

zz I' in
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Since

(v-k n ) 1 A
n P'Q 2nS') An+

rec3lling the definition of u, from (4.28) we obtain

pp 1 + ( 0E -lK

2PAN+P
(4.29) A - C2n A N+p + C2 p n  [An(z)qdz r

Rp n .Rpn

• + (---1- + (p-2

(2* Pr p

Set

A 1 0
yn n Z BR) J p An (z) I d )r

\-n

Then proceding as in the proof of lemm a 3.1, if (4.22) is vio-

lated we have the recursion inequalities

y C 2 Y N4p + YN+P zl+KYn+l C2 n ~ n

Z C 2 p n (Y + Z I+K
n+1 n nI

It follows from these, with the aid of lemma 5.7 of i111 page 96

that yn I Zn # 0 as n - if

y O Z 1+K

1 60 1 60
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where

(2C) 1 +K
(4.30) b 0 = min 2C) P 2 . (2C) 2 dJ

d = min(P K

N+p 1+K"

Therefore to prove the lemma we choose 80 according to (4.30) and

then s* so large that (4.21) is verified for this choice of a0 *

Arguing as in Proposition 3.1 we can now summarize the results

of this section.

Proposition 4.1 There exists a positive integer s* independent

of w& , R such that if (4.2) holds for every cylinder QR c R
R R

e = (2s*l/) - , then either

S*+I .IE +K _I +

(4.31) w < 2 s +  R P - 1  1 +(-7- p) (p-2)

or

1
(4.32) essosc u S W(l -- [)8 2s * + '

R/22

where o0 is the number claimed by Proposition 3.1 and

! 0 (R P

QR/2(o) B(R/2) (to -0 3 t o )

ii.t
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5. Proof of the Emnbedding theorem

Fitst we remark that the proof prcsented only uses the fact

that tne essential oscillation of u in Q ' , = ( ) is

less tlian . Since this is not a priori guaranteed we used the

device of introducing the cylinder QR (see (3.1)) to claim that

if QR is not included in QR
Ni

ess osc u s w s 2 1 " "

NK
0 R

Keeping this in mind we now iterate the process described, over a

sequence of nested and shrinking cylinders.

Let s = maxis;s*+11 where s is the number claimed by Pro-

position 3.1, ani set

- C0  2

All these numnbers are independent of w , R Setting

o0 (p-2) s (p-2) 0
2 = rin{2 3 2s

* p-2),

both Propositions 3.1 and 4.1 can be combined by stating that in

either case we have the following alternative. Either

6
(5.1) C C 0R or

(5.2) ess osc u s wno =

0  1

o
whe re
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Q r(2 0  . o-- -(R\ o

Obvlously (5.2) remains valid if we take the essentail oscil-

lation of u over a cylinder contained 
in Q 0

We set R0 = 2R , and

RR0 1Ro - Ro
1 S*r ]-22 C 0

Then the cylinder

Q 1

2B(R 
it - 8RP, t 

(1 s* p-2
R 1 0(I  1 1t-i o 0 1=--i

is contained in Q and we have

ess osc u oI =

OR1

Therefore the process can be continued starting from 
the cylinder

e1
ORI By iteration we define sequences

R0  2R ; w ess osc u 0 = k 0]

HK 0
QR

nn'--nOnn-1 n In
Cl
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and the cylinders QR (R {to -nRp t'
n

For them the following iteration holds.

Either

6 o(5.3) n S COR n or

(5.4) ess osc u s wn - 9 0 n-I

Rn

n

The theorem is now a straightforward consequence of lemma 5.8

of 111i page 96.

Part II Boundary regularity

We say that a function u : k * IR belongs to the class

6p(n T v,M,y,r,6,K) if u satisfies all the requirements listed

in section 1, with the only difference that the cylinders Q(R,P)

may intersect r , and the various integrals in (1.5)-(1.6) are

extended over O(R,P) n nT and B(R) n . We impose an extra

requirement.

The cutoff function (x,t) 4 4(x,t) vanishes on B(R)

or on the parabolic boundary of Q(Rop) , but it does not vanish

on r. Because of this, a function u belongs to (.TZ Lr,M,y,r,6,K)
p *T

if (1.5)-(1.6) hold for all the levels k for which

(u-k)±¢P - 0 on r
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(;iyn such a requirement it is immediate to see, ;y follo.zing

the .;,imc arqumtnts of s;e(ction 1, that a weak solution u of (0.1)

defin(d in ":T belongs to Sp('aT P M,,rf,)

The proof of regularity up to the boundary is based again on

inequalities (1.5)-(1.6). In fact it is much simpler since we may

simplify such inequalities by making use of the information coming

from the boundary data.

6. Proof of Theorem 2
0

Let x0 , be fixed and let R > 0 be so small that

B(R) 1 We consider also the cylinder

Q(R) = B(R) x [0,R P ]

As before we set

+
u = ess sup u ; u = ess inf u ; w = ess osc u

Q(R) 0(R) Q(R)

If the initial datum u0  satisfies [A6] we set

+
0 = ess sup u0 ; wo = ess inf u0  0 = ess osc u0

B(R) B(R) B(R)

Let s be the smallest positive integer satisfying

(6.1) i2t
20
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where 6 is the number introduced in (1.15). We consider the

following two cases.

Case 1 The inequalities

6+ 2) + w -
(6. ) - -2s 0  < 0  2 s + 2 0 u

both hold, or

Case 2 at least one of (6.2) is violated.

In case 1, subtracting the second inequality from the first

we obtain

(6.3) ess osc u s 2 ess osc u0
Q(R) B(R)

To examine Case 2, suppose for example that the second of

(6.2) is violated. Then

(6.4) (u-(t +2t ) (x,0) - 0 , V x B(R) , Vs s

Let x - r.(x) be a smooth cutoff function in B(R) which

equals one on B(R-cR) , c (0,1) and such that V xCI S (oR)

Then proceeding as in section 1 and making us of (6.4) we deduce

that the following two inequalities hold.

m.I
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(6.5) sup Il(u-(Ij -+6
0" t<-Rp  2 s  2, B (R-,R)

RP

+ [V (U- (I,- + ) dxdi
o 13(R-oR) X 2s

l(u-_(,- + 2- 1) dxdT

(oR) 
p f f 2 s

j (R)

+ (IA-_ (T) 1
q d)r

2s

(6.6)0 s~su p  *2 (- u-l +2s ) ,+ dx

B(R-oR) (t 2

<- -Y J ( ,(u-(W- +2s -
(aR)p  f 2- s_

Q (R)

Ou I-, (u-l(t + 2s  ) v dx d

+ -- VI  -
-P - r~l

2s

These inequalities hold in view of (6.4)) for al s -s0

The proof can now be completed as follows. First, using (6.6)

and the procedure of lemma 3.2, given any aI , (0,1) we can find a

positive integer sI such that either
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(6.7) R 1 ( . 1 (- )- 2 )

or

(6.8) (x,t) f B(R/2) (0,RP] u(x,t) c I, +

S a B(R/2) I /O,R p ] }  .

Second, using (6.5) and the procedure of lemma 3.3 we deduce

that either (6.7) holds or

(6.9) u(x,t) > 1- + 1, V(x,t) E B(R/4)x(O,RP .

2 1

These facts are much easier to establish than the corresponding

onesin the quoted lemmas. In particular in establishing (6.9) no

shrinking occurs in the t-direction. This is d%.Le to (6.4), and the

relatively simple form of (6.5)-(6.6).

Combining these remarks and recalling the definition of Q(R)

we deduce that

NK

(6.10) ess osc u 5 max fn ess osc u ; CR P ; ess osc u 0
0(It/4) Q(R) B(R) 0

where



68

n= 1 - s1 l+1 1 1+llSln C = 2 ;-I= + (i+K 1 p 2)
r & (p- 2  .2

Since this estimate can be reproduced over a sequence of

cyIindrs Q(/4 n n = 1,2,..., with the same constants V , C

standard arguments imply Theorem 2.

7. Proof of Theorem 3

Let (x0 ,t0) ST be fixed and consider the cylinder

Q2R - B(2R) x (t - (2R) p -  , toI

where

= (p-2) + -- - -) + (p-2)p r p

We let R be so small that t0 - (2R)p - C > 0 and define

+ -+

(7.1) = ess sup u ; = ess inf u ; = - = ess osc u
°2R aT 2R T 2R T

If the boundary datum f satisfies [A8) we let

(7.2) f - ess sup f ; of = ess inf f ; f= ess osc f
0 2R n ST 0 2R OST Q2R n ST

Define also the cylinders
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O -B(P) , (t 0 - OD

, t o , o < o !5 2R
0

(lto 0

Q0 ( 0,12) B(P-01P) x (t 0 -6(-02)p to)

where i (0,1) , i - 1,2 and

(7.3) e a t28) p - 2

and a* is a large positive integer to be chosen.

If 8 z (2R)- ' we have

E NK
(7.) 2 (2R)p- . 2s  (2R)

If (7.4) does not hold, then 6 < (2R)-  and

2 R 2R

We will assume that such inclusion holds, in what follows.

Defining s o as in (6.1), we may also assume that at least

one of the two inequalities

(7.5) 1+ + - W

20 2

does not hold. In fact if both are satisfied we have

(7.6) ess Psc u s 2 est osc f
02R 02R n ST
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Lot us assume that for example the first of (7.5) is violated.

Then Vs .. sO

(7.7) (u-(., - ) = 0 on S
)2' T 2R

Proceedin ,:5 in section I and using (7.7) we see that the

following inequalities are valid Vs '? S and VO < p i5 2R.

(7.8) sup I (u-(,+ --- ) + W I,

t0-(l-o 2)Op<tst0 2 2,B(p-o 1 p)nQ

+ WV)((u+- +--- lip
2 8 p,Qp(°1 ,a 2) nQ T

_ (u- (1+ - ) +

+ I(al 2--))l 2+ Y ( - (,+ _ +__)

S TB+ Au + U 2 ) 1 2,Q d r

A.Since (u- (pi + +-) vanishes on ST n wema extend
28 P

+ + 2 q
*, ' ] (U-(0 2 ) with zero outside Q0 0 < 0 S 2R , and therefore

_.)
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the domains of integration in (7.8) may be considered to be

Q0(o 1 1 o 2 ) 0 B(P-alp)

By virtue of assumption [A7  , for all t c (t o - pp't 0 1

x t B Iu ( , ) > A+ - W I < (1-a,) I B(P)l VP s 2R)X ~p) l(X~t > t ,j

2a

Consequently the assumptions of lemma 4.4 are verified, and

given 0 0 (0,I) we may find s* c 3 such that either

(7.9) 2 .+1 s - 1 + L_ I) (p-2)

2 S+1r p

or

(7.10) I(X~t) (IE >~~t U 2--1< I

Remark: The choice of s* will determine also the size of the

cylinder 0R (see (7.3)). As shown in lemma 4.4. such a choice

can be made a priori, independent of w and R

Finally by the method of lemma 4.5, and using inequalities

(7.8), we conclude that either (7.9) holds or

u(x,t) S T - 2 , (Xt) f OR/2 "

Combining the various alternatives presented, w:e have
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(7.11) ess osc u maxin ess osc u ; CR p  ; ess osc f)

R/2 T 2R 2Rn ST

"! ' '  = 1 - 1 1s + 1 +

2s+1; C = +; (1*= 1+ (-L-- 1) (p-2)

Interation of (7.11) yields Theorem 3.

Remark The proof of Corollary 0.1 follows from the previous

arguments except for proving regularity at points (x0 ,0) f an X 101

The latter case can be demonstrated by a straightforward adapta-

tion of the previous methods.

8. Proof of Theorem 4

The proof is essentially the same as for the interior regu-

larity and it is based on the arguments of sections 2-5, except

that rather than working with cylinders of the type

Q(R,p) I B(R) x {t0 -P, t0 ) we will be working with cylinders

C(R,P) - B(R) n Q x (t0-P,t0 ) •

First we indicate how to derive inequalities analogous to

(1. 5) -(1.6) .

Let x0c an be fixed and consider the portion of the boundary

an given by

S0 (R) E1a n (lx-x0  R)

Since a is of class C and our arguments are local in nature,

K"i we may assume, without loss of generality that S0 (R) lies on

the hyperplane x N - 0 and that for example
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a (R) n A cf XN > 0)

If (x0 ,t0 ) ST , consider the cylinder

(8.1) C(R,c) ={B(R) n D) x {t 0 -P, t 0

where v 0 is so small that t o - P 0

Let (xt) - C(x,t) be apiecewise smooth function defined in

Q(R,Pl such that 0 s c I and t(x,.) - 0 for x c 3B(R) . We

observe that c vanishes on the lateral boundary of Q(R,p) and

not on the lateral boundary of C(R,p) . We write (0.16) is terms

of the Steklov averagins and take test functions of the type

± (uh-k) -P

where k c mR satisfies the restriction

II (u-k)' f C(R, e. 6

and 6 is defined in (1.15). Performing exactly the same calcu-

lations and limiting processes described in the proof of Proposi-

tion 1.1, we arrive at inequality (1.5), with the domains of inte-

grations being now S(R) n 0 and C(R,p) , and with, on the right

hand side the extra boundary integral

i I
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A f 0 tg (xi,u) (u-k) 
P do di .

tof S0 (R)

This last integral is estimated by making use of assumption

[A1 0 ] and the fact that u T, ( T  as follows.

A JJ div[±g(xIu)(u-k)-'PJdxd

C(R,O)

y 'VJ (u-k) f(r. + (P-1.) CP- iI V r.) + iVx (u-k tP)dx dT

C (R, P)

By Young's inequality, VE > 0

A S E 1 Vx(u-k)-PcPdxd1 + I f (u-k).-PIVx cIPdxdT

C(R, 0) C(R, P)

+ y(c) Imeas AkR(I)IdT

t 0-0

where

a (t) = {x c B (R) n [ ( -) (x,t) > 0) .

Combining these estimates, we see that the following inequa-

lities are valid
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(8.2) SuP [(u-k) 2 CP (x,t)dx + J iVx(u-k)-PCPdxdI

t - StftfIo - - 3 (0 Q C (Re 3

(u-k) p (X, to-)dx 1 (u-k):P IP dxdT

+ fr [(u-k)'122 p-l~tdxd' + (jto es

C ( ), C( 0

+ Y I Emeas AkR(r)]dt

t 0-p

In order to derive an inequality similar to (1.6) we proceed as in

the proof of Proposition 1.1 and in addition we treat the boundary

i n t e g r a l 0

t o g (x,?,u) 'do d 
tO-P %S(R)0

.1
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by trainsforming it into an interior integral over C(R,) as

indicated aibove. As a result we obtain the inequalities

(8.2) su.b 2 ~(H! ,(u-k~) P(x, t)dx
t0 -tt0 B (R)r

'0 J *(H,u-k)1,v>PxtO-dx

8 (R) n &

+ Y JJ *H, (u-k) v) I * u(H±,(u-k)V v)j - 7X dxdt

C (R, p)

Imeas A± di

t00

With these inequalities at hand, the proof can now be completed

exactly, step by step, as in the proof of interior regularity.

The only significant modification regards the proof of the recur-

4 sion inequalities (3.8)-(.3.9) in lemma 3.1 (and similar inequalities

in lemmas 3.3 and 4.5). For these we used the embedding of Corollary

2.4 valid for functions u f V p(C(R,P)) .In our case (u-k) CP does

not vanish on the lateral boundary of C(R,P) and therefore we must

use (2.8) with the constant C given by (2.9). We observe however

that for domains of the type WbR) n n) A P,O) , the constant

in (2.9) is independent of R
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Finally the last modification occurs in the use of DeGiorgi's

inequality (2.7) (employed in lemma 4.4).

Now such inequality holds for convex domains (see Remark 2.1)

and therefore (2.7) holds with B(R) replaced by B(R) n n :

B(R) n {xN  0) . The remainder of the proof stays unchangeu.

I
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